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Adherent Raindrop Modeling, Detection
and Removal in Video

Shaodi You, Student Member, IEEE, Robby T. Tan, Member, IEEE, Rei Kawakami, Member, IEEE,
Yasuhiro Mukaigawa, Member, IEEE, and Katsushi Ikeuchi, Fellow, IEEE

Abstract—Raindrops adhered to a windscreen or window glass can significantly degrade the visibility of a scene. Modeling, detecting
and removing raindrops will, therefore, benefit many computer vision applications, particularly outdoor surveillance systems and
intelligent vehicle systems. In this paper, a method that automatically detects and removes adherent raindrops is introduced. The core
idea is to exploit the local spatio-temporal derivatives of raindrops. To accomplish the idea, we first model adherent raindrops using law
of physics, and detect raindrops based on these models in combination with motion and intensity temporal derivatives of the input
video. Having detected the raindrops, we remove them and restore the images based on an analysis that some areas of raindrops
completely occludes the scene, and some other areas occlude only partially. For partially occluding areas, we restore them by retrieving
as much as possible information of the scene, namely, by solving a blending function on the detected partially occluding areas using the
temporal intensity derivative. For completely occluding areas, we recover them by using a video completion technique. Experimental
results using various real videos show the effectiveness of our method.

Index Terms—Outdoor vision, rainy scenes, raindrop detection, raindrop removal

1 INTRODUCTION

OUTDOOR vision systems employed for various tasks such
as navigation, data collection and surveillance, can be
adversely affected by bad weather conditions such as rain,
haze and snow. In a rainy day, raindrops inevitably adhered
to windscreens, camera lenses, or protecting shields. These
adherent raindrops occlude and deform some image areas,
causing the performances of many algorithms in the vision
systems such as feature detection, tracking, stereo correspon-
dence, etc., to be significantly degraded. This problem occurs
particularly for vision systems that use a hand-held camera or
a top-mounted vehicle sensor where no wipers can be used.
Identifying adherent raindrops from images can be
problematic due to various reasons (different shapes,
blur, glare, etc.) as shown in Fig. 1. To address the prob-
lems, we analyze the appearance of adherent raindrops
from their local spatio-temporal derivatives. A clear, non-
blurred adherent raindrop works like a fish-eye lens and
significantly contracts the image of a scene. Consequently,
the motion inside raindrops is distinctively slower than
the motion of non-raindrops. Besides, unlike clear rain-
drops, blurred raindrops are mixtures of light rays origi-
nated from various points in the background scene,
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causing the intensity temporal derivatives of blurred rain-
drops to be considerably smaller than those of non-
raindrops. These two clues are the key to our detection
method. Relying on them we propose a pixel based detec-
tion method, which is generally applicable to handle any
shape and size of raindrops. Fig. 1le shows a result of our
detection method.

Having detected the raindrops and analyzed the image
formation of raindrops, we found that some areas of a rain-
drop completely occlude the scene behind, and the remain-
ing areas occlude only partially. For partially occluding
areas, we restore their appearance by retrieving as much as
possible information of the scene, namely, by solving a
blending function on the detected areas using the intensity
change over time. For completely occluding areas, we
recover them by using a video completion technique. Fig. 1f
shows a result of our raindrop removal method.

Our contributions in this paper includes the intro-
duction of:

e Adherent raindrop models and analysis, which use
the derivative properties and involve only few
parameters.

e A novel pixel-based detection method based on
motion and intensity change.

e A relatively fast adherent raindrop removal method,
which exploits a blending function of partially
occluded areas.

Note that, like most methods, our method is subject to a
few assumptions. We assume raindrops are static during
the detection process, which we call quasi-static assump-
tion. In our experiments, we consider raindrops to be quasi-
static when their motion is less than 4 pixels/second with
raindrop size around 40 pixels (we discuss this issue further
in Section 7.1). To detect a newly appearing raindrop, our
method requires consecutive video frames to integrate the
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Fig. 1. (a-e) The various appearances of raindrops. (e-f) The detection
and removal result by our method.

features. In our experiments, for a 24 fps camera, we use 100
consecutive frames as default, and accuracy will drop when
less than 20 frames are used. Also, there is a trade-off
between the accuracy and efficiency. While our method
achieves optimal accuracy when using both the intensity-
change and motion based features, only intensity-change
based feature can work in real time.

2 RELATED WORK

Removing the influence of haze, mist, fog (e.g., [1], [2], [3],
[4]), rain and snow (e.g., [5], [6]) have been well exploited.
Dealing with rain, Garg and Nayar model rain streaks [7],
and devise algorithms to detect and remove them [6], [8].
Later, Barnum et al. [5] propose a method to detect and
remove both rain and snow. Single-image based methods
are proposed by Kang et al. [9] and Chen et al. [10]. Unfortu-
nately, applying these methods to handle adherent rain-
drops is not possible, since the physics and appearance of
falling raindrops are significantly different from those of
adherent raindrops.

2.1 Sensor/Lens Dust Removal

Sensor dust removal is to some extent a related topic to rain-
drop detections. Willson et al. [11] give a detailed analysis
on the imagery model with dust adhered to the lens. Dust
blocks light reflected from objects and scatter/reflect light
coming from the environment. The former is called a dark
dust artifact, and the latter a bright dust artifact. Zhou and
Lin [12] propose method to detect and remove small dark
dust artifacts. Gu et al. [13] extend the solution to suffi-
ciently blurred thin occluders. Although adherent raindrops
can be considered as a kind of sensor dust, existing sensor
dust removal methods cannot handle adherent raindrops,
since raindrops can be large and are not as blurred as dust.
Moreover, raindrop appearance significantly more varies
than dust appearance.

2.2 Adherent Raindrop Detection and Removal

A few methods for detecting adherent raindrops have been
proposed. Roser et al. attempt to model the shape of adher-
ent raindrops by a sphere crown [14], and later, Bezier
curves [15]. These models, however, are insufficient, since a
sphere crown and Bezier curves can cover only a small por-
tion of raindrop shapes. Kurihata et al. [16] and later Eigen
et al. [17] approach the problem through machine learning.
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However, as shown in Figs. 1a, 1b, 1c, and 1d, collecting
the training images for all various shapes, environment,
illumination and blur are considerably challenging. Both of
the methods are limited to detect small, clear and quasi-
round rain spots. Yamashita et al. propose a detection and
removal method for videos taken by stereo [18] and pan-
tilt [19] cameras. The methods utilize specific constraints
from those cameras and are thus inapplicable for a single
camera. Hara et al. [20] propose a method to remove glare
caused by adherent raindrops by using a specifically
designed optical shutter. As for raindrop removal, Roser
and Geiger [14] address it using image registration, and
Yamashita et al. [18], [19] utilize position and motion con-
straints from specific cameras.

2.3 Video Completion

Video completion has been intensively exploited by com-
puter vision researchers. Only those methods work with
large spatio-temporal missing areas can be used to remove
detected adherent raindrops. Wexler et al. [21] propose an
exemplar based inpainting method by assuming the miss-
ing data reappears elsewhere in the video. Jia et al. [22]
exploit video completion by separating static background
from moving foreground, and later [23] exploit video com-
pletion under cyclic motion. Sapiro and Bertalmio [24] com-
plete the video under constrained camera motion. Shiratori
et al. [25] and Liu et al. [26] first calculate the motion of the
missing areas, and then complete the video according to the
motion. Unfortunately, outdoor environments are too com-
plex to satisfy static background, cyclic motion, constrained
camera motion, etc. Therefore, we use cues from our adher-
ent raindrop modeling to help the removal.

3 CLEAR RAINDROP MODELING

Raindrop appearance is highly depending on the camera
intrinsic parameters. In this section, we first assume a pin-
hole camera and non-blurred raindrops, and explore rain-
drop imagery properties in this condition. Based on our
analysis in this section, we model blurred raindrops in the
next section. Unlike the previous methods [15], [16], [18],
[19], [20], which try to model each raindrop as a unit object,
we model raindrops locally from the derivative properties
that involve only few parameters.

3.1 Physical Attributes

From Figs. 1a and 1b, we can see that adherent raindrops
have various shapes and sizes, and their appearance is
dependent on the environment.

Size. Unlike estimating the size of airborne raindrops,
which is mentioned in the work of Garg et al. [6], estimating
the size of adherent raindrops is not trivial. Since it depends
on the gravity, water-water surface tensor, water-adhering-
surface tensor and many other parameters.

Fortunately, it is possible to set an upper bound of the
size by using few parameters. As illustrated in Fig. 2a, to
prevent raindrops from sliding down, both the two-phase
point (water-air) and three-phase points (water-air-
material), the surface tensor should balance the pressure.
This also prevents the water drop from breaking down.
Although estimating the balance and upper boundary of
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Fig. 2. (a) Balance at a raindrop surface. A denotes a two-phase point. B
denotes a three-phase point. T denotes a surface tension, and P for
pressure. At two-phase point A, surface tension T and pressure P are
balanced. Three-phase point is an intersection of water, air and glass,
while two-phase point is an intersection between air-water. (b) Change
of the angle of tangent along a raindrop boundary.

the three phase points is intractable due to the unknown
parameters of the material, estimating the balance and
upper bound of two-phase point has been studied by physi-
cists, and can be used to derive an upper bound of raindrop
size, i.e., 5 mm [27].

Shape. Although most existing methods assume the shape
of raindrops to be circle or ellipse, the real raindrop shape
varies in a large range. Despite this, however, we can still
find some regular patterns due to the surface tension. Rain-
drop boundaries are smooth and raindrops are convex in
most cases. Hence, we can quantitatively characterize rain-
drop shape using two features: shape smoothness and
roundness. As illustrated in Fig. 2b, given a raindrop area
on the image plane, denoted as R, we can integrate the
change of the tangent angle along the boundary. The inte-
gration is denoted as S(R):

S(R) = j{ ozl (1)

where 9R is the boundary of the raindrop, and z = (z, ) is
the the 2D coordinates on the image plane. For convex
shape, S(R) = 2n. For non-convex or zig-zag shape, the
smoothness will be greater than 2m. Fig. 3 shows some
examples.

Roundness, denoted as O(R), is the area of the shape
divided by the square of its perimeter:

O(R) = ®)

(fzeaR |dx|)2 .

A rounder shape has a larger roundness value and a perfect
1

circle has the maximum roundness value: 77[:: 5 = 3= = 0.080.
Fig. 3 shows some examples. Both the smoothness and
roundness are invariant to scaling and rotation. Unlike our
previous method [28], which used the roundness, our cur-
rent method employs smoothness. This is because the
computational complexity of roundness is O(n?) while
smoothness is O(n).

Dynamics. In rainy scenes, some raindrops might slide
sporadically. The sliding probability and speed depend on

a few attributes, such as, surface tension coefficients, surface

O © & o= J 3k

Smoothness 21(6.28) 2n(6.28) 3m(9.42) 11.10  9.41 54.15
Roundness 1/47(0.080) 0.075  0.050  0.029  0.058 _ 0.016

Shape

Fig. 3. Smoothness and roundness of some shapes.
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TABLE 1
Raindrop Dynamic of Scenes in Fig. 19

Data Camera Camera Max raindrop
speed shaking speed observed
Experiment 1 - 4 5km/h yes 0.48 pixel/s
Car-mounted 30 km/h yes 0.01 pixel/s
Surveillance 0 no 0.40 pixel/s

tilt, wind, raining intensity, raindrop size, etc. An exact
modeling of raindrop dynamics is intractable. Fortunately,
in light rainy scenes, we find it reasonable to assume most
raindrops are quasi-static (in our experiments, we consider
raindrops are quasi-static when its motion is less than 4 pix-
els/second with raindrop size around 40 pixels). We
observed the motion of real adherent raindrops in scenes in
Fig. 19. Focusing on a raindrop, we compared the current
location with the location one minute later and convert it to
speed (pixel per second). Table 1 lists the maximum speed
observed in each scene. We quantitatively evaluate the tol-
erance of raindrop dynamics in Section 7.

3.2 Clear Raindrop Imagery

As shown in Fig. 4a, each raindrop is a contracted image of
the environment, as if it is taken from a fish-eye-lens cam-
era. The numerical values indicated in Fig. 4c are the scale
ratios between the original image and the image inside the
raindrops calculated from the black and white patterns. The
scale ratios are around 20 to 30, meaning that the motion
observed inside the raindrops will be 1/30 to 1/20 slower
than the other areas in the image.

In this section, we consider the camera as a pin-hole cam-
era, where both the raindrops and environment are not
blurred. This assumption is necessary in our analysis to use
motion as a feature of raindrop detection. As illustrated in
Fig. 5, there are point pairs on the image plane that repre-
sent exactly the same environment points. One of them is
coming from a light ray that directly travels to the image
plane, denoted as F,, and the other is a light ray traveling
through a raindrop, denoted as P..

Let us consider the relation between P, = (z,y) and
P, = (u,v) on the image plane. As shown in Fig. 4b, there is
a 2D to 2D mapping ¢ from (u,v) to (z,y):

('Tv y) = (p(u, U) = (901 (U7 ’U), QDQ(U> U)) . 3)

Considering the refraction model in Fig. 5, to know the
function ¢, we need: 1) the position and shape information
of the raindrop, 2) the camera inner parameters, and 3) the
background depth information. Our analysis, however,
looks into the spatial derivative properties and therefore
can avoid obtaining ¢ explicitly.

Image plane
Raindrop
(Image inside a raindrop)

Mapping @

Environment
(Image without raindrops)

(b) Continuous mapping

(a) Observation (c) Contraction ratio

Fig. 4. (a) A raindrop is a contracted image of the environment. (b) On
the image plane, there is a smooth mapping ¢ starting from the raindrop
into the environment. (c) The contraction ratios from the environment to
a raindrop are significant.
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Fig. 5. The refraction model of two points on an image plane (P, and P,)
that are originated from the same point in the environment. There are two
refractions on the light path passing a raindrop. The camera lens cover or
protecting shield is assumed to be a thin plane and thus can be neglected.

3.3 Spatial Derivative of Clear Raindrop
The scalar contraction ratio &, is the derivative of ¢ with
respect to u and v in the direction (8u, v):

Ep(u, v, 8u, sv)
ettt gl @
Guov)—0  ||(u + Su,v + dv) — (u,v)|

Unlike obtaining an explicit expression of ¢, obtaining an
upper bound of £, needs only the upper bound of raindrop
size and the lower bound of the distance between a rain-
drop and the camera. The raindrop upper bound has been
discussed in Section 3.1. The raindrop-to-camera distance
lower bound depends on camera settings. In our experi-
ment, we normally found d < 200 mm.

Using the imaging model in Fig. 5, for outdoor environ-
ment we can prove that, for any (v, v) and any (8u, §v):

Ey > 10> 1. )]

The proof is provided in Appendices A and B in the supple-
mentary material (which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2015.2491937.

3.4 Detecting Raindrops Using Optic Flow

Raindrops not only contract the images of the environment,
but also contract the motion between images. Consider a
point pair P.(t;) and P,(¢;), and their correspondence in
next frame P,(t2), P.(t2). We denote the motion between
P,(ty) and P.(ty) as M(P,) = P.(t2) — P.(t;) and the motion
between P,(t1), P.(t2) as M(P,) = P,(t2) — P.(t1). Based on

. Raindrop

Light path
Envimnmcm\

Aperture | Lens

C
(a)

\

C:o<a<1
(b) (CY) (Co}
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Egs. (4) and (5), and using the integral version triangle
inequality, we have:

||M(p€)H _ HPe(tZ) - Pe(tl)H
M) (1P (t2) = Pr(t1)]

_e(P(t2) — (P (1)
TR -RmI

(6)

This means the motion in the raindrop area has been signifi-
cantly contracted, which gives us an idea to use optic flow as
a feature to identify raindrops. Figs. 8a and 8b show exam-
ples of optic flow on raindrop and non-raindrop areas. As
we can see, the motion intensity in the raindrop area is signif-
icantly smaller than that in the non-raindrop area. Based on
this, we will develop a detection algorithm in Section 5.

4 BLURRED RAINDROP MODELING

In contrast to raindrop imagery with a pin-hole camera, for
a normal lens camera, when the camera focuses on the envi-
ronment scene, raindrops will be blurred. To handle this,
we model blurred raindrops, and theoretically derive the
temporal property of raindrop pixels. Based on this prop-
erty, we propose a pixel-wise raindrop detection feature:
intensity change.

4.1 Blurred Raindrop

As illustrated in Fig. 6, the appearance of a pixel on an image
plane depends on the collection of light rays. These rays can
come from light emitted directly by an environment point
(Fig. 6 A), light refracted from a raindrop (Fig. 6 B), and a
mixture of environment light and raindrop light (Fig. 6 C).
We denote the light intensity collected by pixel (z,y) as
I(z,y). We also denote the light intensity formed by an envi-
ronment point that intersects with the line of sight as I..(z, y);
and, the light intensity reached (z, y) passing through a rain-
drop as I,.(x,y). Hence, pixel (z,y) collecting light from both
the raindrop and the environment can be described as:

I(l‘, y) = (1 - 0[)[8($7y) +OlIT(J}, y)? (7)

where « is the proportion of the light path covered by a rain-
drop, as depicted in Figs. 6b and 6b’.

o

B
Cra=0 c

) “

B:a = amax <1 ~—

D -

C:0 < a< admax

Fig. 6. Rows: The appearance and model of pixels on an image plane collecting light from A: environment, B: raindrop, C: both. Columns: (a) The light
path model. Green light: the light coming from environment point; Blue light: the light refracted by a raindrop. (b) Raindrop-plane-cut of the model in
(a). Green circle: the area of light collected. Blue circle: the raindrop. «: percentage of light collected from the raindrop. (b’) Light path coverage when
the raindrop is small. (c) The appearance of the 3 situations in (b). (¢’) The appearance of the 3 situations in (b’).
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(a) Alpha channel of a disk with varying blurring kernel
0 5 10 15 20 25 30 35 40 45 50

(b) Observe a ralnd.rop W1th varylng f- stop

i

Fig. 7. a. «-channel of a disk with various blur kernels. b. Raindrops with
varying f-stop. c. Raindrops with varying angles. Raindrop appearance
is highly directional.

Blending coefficient « is determined by the area of the light
path and the raindrop. Using the model in Fig. 6, the diameter
of the light path on the raindrop plane can be estimated using;:

D D f
Drd " DrdN’ ®
where %, called the f-stop, is the convention expression for
the camera aperture setting.

A more convenient way to express « on the image plane
is to use a blur kernel. First, as illustrated in Fig. 7a, « is
either 0 or 1. We denote the blending coefficient of clear
raindrops as «,. Hence, « of blurred raindrops can be calcu-
lated by convoluting «. with a disk kernel, where the diame-
ter of the kernel is given by:

(D—d) f
= D=7 d A, 9)
which is proportional of the aperture size A. The derivation
of Eq. (9) can be found in the literature of depth from defo-
cus [29]. Consequently, if a raindrop is significantly blurred,
the blending coefficient is smaller than 1. In such a case, the
raindrop cannot totally occlude the environment. Fig. 6c’
shows an example. Fig. 7b shows real blurred raindrops,
and Fig. 7c show raindrop appearance, which is highly
directional.

4.2 Temporal Derivative of Blurred Raindrop

We avoid estimating the exact appearance of blurred rain-
drops due to its intractability. Instead, we explore the tem-
poral derivative features. In consecutive frames, we observe
that the intensity of blurred pixels (cases B and C) does not
change as distinctive as that of environment pixels (case A).
To analyze this property, let us look into the intensity tem-
poral derivatives of blurred pixels. Referring to Figs. 6a,
case B and C, light collected from a raindrop is actually orig-
inated from a large area in the environment. We denote the
area as (), (z, y). At time ¢, we expand I,(z, y) in Eq. (7) as:

2.

(z,w)€Qp(2,y)

(10)

I(z,y,t) = Wz, w)le(z w,t),

where W(z,w) is the weight coefficient determined by the
raindrop geometry. W(z, w) and €, (z,y) can be considered
constant in a short period of time.

If we take the difference of intensity between time ¢; and
t» in Eq. (10), and consider the triangle inequality, we have:

1725
‘I,-(:L', Y, tl) - L‘(mvy: t2)|
< Y WeEwlk(nwh) - Lzw). D
(2w)€Qy ()

Here, by taking into account Eq. (5), we know the area
ratio is more than one hundred when the raindrops clearly
appear, namely,

£ > 100> 1.

: (12)

Notice that ¢ is not conformal, and the proof is provided in the
supplementary material (available online). For blurred rain-
drops, the area ratio further expands. Referring to the model
in Fig. 6, in addition to the expanded area caused by a rain-
drop, the out-of-focus blurring also causes the area to expand.
Thus, we can consider €),(z, y) to be a sufficiently large area.
According to the law of large number, we can have:

E|Ir($,y, tl) - I,)(ZIJ,y, t2)|<<E|IL’(m7y7tl) - L,(ZL', Y, t2)|7 (13)

where E denotes the expectation.

Since the temporal derivatives work as a high pass filter,
we may also consider Eq. (13) in a frequency domain, where
the temporal high frequency component of a raindrop is sig-
nificantly smaller than those of the environment, described as:

Io(x,y,0) L I(x,y,0),0 =wp,om+1,...,N (14)

where 7 is the Fourier transform of sequence I(z,y,t),t =
t1,t2,..., N, and wy, is currently an undetermined threshold
for the high frequency.

4.3 Detecting Raindrops Using Intensity Change
By considering Egs. (13) and (7), the temporal difference for
I(z,y,t) will be small when « is large:

E|I(z,y,t1) — I(z,y,t)|
= a(z,y) Bl (z,y,t1) —
+ (1 —of
~ (1 —a(z,y)

I(z,y, o)
T,y )E‘Ié z,Y, tl) - Ie($7ya t2)|
)E|[Ef(x7y7 tl) - Ie(l‘ayv t?)l

(15)

Therefore, we can use the temporal intensity change as a
feature to detect raindrops. Fig. 9 shows an example.

4.4 Effects of Glare

As illustrated in Fig. 1d, a raindrop refracts bright rays of
light from the environment, and generate glare. This phe-
nomenon does not affect the derivative properties described
in the previous sections. Since, while glare emits high inten-
sity light, and the spatial derivatives are independent from
light intensity. Moreover, the appearance of glare in video
is temporally smooth, i.e., the intensity monotonically
increases until it saturates, and then it monotonically
decreases until the glare fades out. The temporal derivatives
of this smooth change is still small, and thus does not affect
the derivative properties.

5 RAINDROP DETECTION

5.1 Feature Extraction

We generate two features for the detection: a motion feature
(OF) which is based on the analysis of clear images in Sec-
tion 3; and the intensity change feature (IC) which is based
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(a) Image sequence

(b) Inter frame
SIFT flow

Fig. 8. The accumulated optic flow as a feature.

on analysis blurred images in Section 4. We calculate the
motion feature using a robust optic flow algorithm, e.g.,
SIFT-flow [30], which is shown in Fig. 8b, and calculate the
intensity change feature using |I(z,y,t;) — I(z,y, t2)|, which
is shown in Fig. 9b.

In the examples, the two features are calculated using
only two consecutive frames. In fact, the features will be
more informative if they are calculated using data accumu-
lated over more frames. Statistically the more frames used,
the more descriptive the features are. Unfortunately, rain-
drop positions can shift over a certain period of time, making
the detection using long frames erroneous. In our observa-
tion, with moderate wind, raindrops can be considered static
over a few seconds. As default, we calculate over 100 frames
which is about 4 seconds for the frame rate of 24 fps. Figs. 8c
and 9c show examples of the two accumulated features.

We employ both features to have optimal accuracy. If time
is a concern, however, we can use only intensity change.

5.2 Refined Detection
Having calculated the features, we use level sets [31] to
identify raindrops. First, a convolution with Gaussian
(0 = 2 pixels by default) is employed to reduce noise. Then,
level sets are calculated, as illustrated in Fig. 10. Specifically,
for the normalized 2D feature, we calculate the level-sets
range from —2 to 2 with the step 0.05.

The following criteria are applied further for determining
raindrop areas:

1)  Feature threshold. As analyzed previously, raindrop
areas should have smaller feature values. Hence, we
normalized the accumulated feature with the mean
value 0 and variance 1. In our experiment, those pix-
els with feature values less than —0.7 are considered
to be raindrop pixels.

2) Smoothness. As analyzed in Section 3.1, (Eq. (1)), rain-
drop contours usually have a smoothness value at 27.
Thus, we set the threshold for smoothness as 2.57.

Note that, unlike [28], we do not utilize the closure explic-

itly, since it is already represented by the smoothness, which
cannot be defined to non-closed lines. We also do not use size,
as it varies significantly. Fig. 10 shows the detecton pipeline.
For each detection, we accumulate the feature for the past 4
seconds and compute the level sets to detect raindrops. The
overall detection algorithm is described in Algorithm. 1.

IC (Online)
Feature extraction

OF (Offline)
Image sequence
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(a) Image sequence

(b) Inter frame
intensity change

(c) Summation of (b)
over 100 frames

Fig. 9. The accumulated intensity changes as a feature.

Algorithm 1. Raindrop Detection

Default parameter settings
Video: 1080 x 720, 24 fps
Feature accumulating period: 4s(96 frames)
Number of detection phases: 2 per second
Feature threshold:
—0.7 for intensity change
—0.4 for optic flow
Smoothness threshold: 2.57
while (not video end)
compute the feature for new frames
Accumulate the feature in specified period
if (Detection phase)
reduce noise of feature, 0 = 2 Gaussian filter
normalize feature to average = 0, variance = 1
calculate level sets of the feature image.
for (all contours)
if (feature < threshold
& smoothness < threshold)
This contour circles a raindrop
end
end
Displace result for current detection phase
end
end

5.3 Real Time Detection

The detection method can work in real time if we use only the
intensity change as the feature. Although this real time per-
formance is subject to a delay for a few second (4 seconds in
our experiments) to detect newly appearing raindrops, since
we need to collect the features in a few consecutive frames.
We run our program on a 3.1 GHz CPU and Matlab with no
parallelization. The video is 1,280 x 720, 24 fps. Accumulat-
ing the feature takes 0.0086 s per frame, which is 0.10 s for 12
frames. Gaussian filter takes 0.04 s. The level sets takes 0.22 s.
Selecting contours takes 0.06 s. The overall computing time
for each detection phaseis 0.42 s.

6 RAINDROP REMOVAL AND IMAGE RESTORATION

Existing methods try to restore the entire areas of the
detected raindrops by considering them as solid occluders
[14], [19]. In contrast, we try to restore the raindrop areas

AT AT
o6 0
= 6 iR,
Reduce noise Level set Refined detection

Fig. 10. The detection pipeline. Our method can work in real time if using only the intensity change.
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from the available information about the environment when-
ever possible. Based on Eq. (7), we know that some areas of a
raindrop completely occludes the scene behind, however the
rest occludes only partially. For partially occluding areas, we
restore them by retrieving as much as possible information
of the scene, and for completely occluding areas, we recover
them by using a video completion technique.

Algorithm 2. Raindrop Removal

if (default)
N =100, wy, = 0.05N, Az = Ay = +1pixel
thl = 250, th2 = 40
end
Load N continuous frames
Calculate «(z, y) for each pixel I(z,y, -).
if (maz(I(z,y,-)) > thl & a(z,y) > 0) {(z,y) is glare}
for (non-glare pixels and 0 < «(z,y) < 0.9)
for ((R; G; B) channel separately)
while (3 pixel unprocessed)
Find pixel with smallest « (I(z, y, -))
Find neighbors of (z,y) in (z + Az, y + Ay)
Remove neighbors (intensity difference > th2)
Do DCT: Z(z,y, ) = I(x,y,t)
I(x,y,p : N) = mf(zw,wm :N)

I(x,y, 1 : wy) = mean(Z(z + Az, y + Ay, 1 : wy,))
Do inverse-DCT
end
end
end
Repair the remaining areas using an inpainting method.

6.1 Restoration
A blurred image can be recovered by estimating /.(z,y) in
Eq. (7), in the condition that the blending value is moderate,
ie., a(x,y) < 1. To do this, we first have to calculate « in
Eq. (7). Note that, based on our previous detection phase,
the positions and shapes of raindrops on the image plane
are known. Using the out-of-focus blur model in Fig. 6a, the
diameter ¢ of the equivalent light path area on the image
plane is given by:

(D—d) f

(D—7) Od (o

where f is the focal length. O is the relative aperture size
(also called f-stop) which can be found in the camera set-
ting. D can be assumed to be infinite, and d is estimated
empirically (we assumed constant throughout our experi-
ments). The derivation of Eq. (16) can be found in the litera-
ture of depth from defocus [29]. Thus, a circle centered at
(z,y) with diameter ¢ on the image plane can be drawn,
as shown in Figs. 6b and 6b’. The blending coefficient
a(x,y) is the proportion of the circle that overlaps with
the raindrop.

Having obtained «, we recover I. from the frequency
domain. According to Eq. (14), the high frequency compo-
nent of raindrop I, is negligible. Thus, for frequency higher
than a threshold wy,, we have:

1

“ Ty o

Ie(wvyaw) I(xava)a w > W,
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where Z(z,y,) is the Discrete Cosine Fourier Transform
(DCT) of I(z,y,t) on N consecutive frames. wy, is set as
0.05N as default. As for the low frequency component, we
replace it with the mean of its spatial neighborhood (from
only the non-raindrop pixels or the already restored pixels):

To(x,y,0) = mean(Z(x + Az, y + Ay, 0)), o < w,,  (18)

where (z + Az,y+ Ay), Az,Ay < 1 pixel are spatial neigh-
borhood of (z,y). When averaging, we exclude neighboring
pixels that have intensity differences larger than 40 (in 8-bit
RGB value). By combining Eqs. (17) and (18), and perform-
ing inverse-DCT, we recover I.(z,y, ).

6.2 Video Completion
Having restored the partially occluding raindrop pixels,
there are two types of remaining areas to complete:

e  When « is close or equal to 1.0, I, will be too scarce to
be restored, as shown in Eq. (17). Because of this, we
do not restore pixels with o > 0.9.

e  When there is glare, the light component from rain-

drop will be too strong and therefore saturated.

For those areas, we adopt Wexler et al.’s [21] space-time
video completion method. As discussed in the related work,
the method [21] only assumes that missing data reappears
elsewhere in the video, which is most likely to be satisfied
in outdoor scenes. The overall algorithm of our proposed
raindrop removal algorithm is shown in Algorithm 2.

7 EXPERIMENTS AND APPLICATIONS

We conduct quantitative experiments to measure the accu-
racy and general applicability of our detection and removal
method. To show the benefits of our method, we include
two real applications of our method on motion estimation
and structure from motion.

7.1 Quantitative Analysis on Detection

We evaluate how raindrop size, blur, motion, scene complex-
ity affect the detection using synthetic data, and estimated
the optimal parameters. We also conduct the detection on
various real scenes and compare the performance with that
of the state-of-art methods. We use the precision-recall curve
for our evaluation, where precision is defined as the number
of the correct detection divided by the number of all the
detection, and recall as the number of correct detection
divided by the number of the detectable raindrops.

Raindrop size and blur. As discussed in Section 3.2, our
detection method is based on the fact that raindrops behave
like a fish-eye lens and contract the environment. Obviously,
a larger raindrop contracts less than a smaller raindrop does.
Hence, raindrop physical size, which is limited by the rain-
drop tensor, affects the contraction ratio. Moreover, since
our input is an image, the distance between the raindrop and
the camera lens also affect the contraction ratio.

When raindrops are close to the lens, we need to consider
the effect of out-of-focus blurring. Since, the closer to the lens,
the more blur the raindrop is, implying lesser visibility. In
our experiment, we explore how raindrop size and blur affect
the detection accuracy. As illustrated in Fig. 11, we generate
synthetic raindrops with fixed positions, but with various



1728

Size (pixel) 60 30
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Fig. 11. Synthetic raindrops with various size and blur levels. The image
size is 720x480, raindrop size (long axis) varies from 20 to 60 pixels,
and the radius of the disk-blur-kernel varies from 0 to 40 pixels.

size and blurring levels. The thresholds of the normalized
intensity-change and optic flow feature are set to —0.4 and
—0.3, respectively, and the smoothness is set to 2.57.

The detection precision and recall are evaluated using
two methods: pixel-based and number-of-raindrop based
methods. For the pixel-based method, the ground truth is
the pixels with the raindrop blending coefficient @ > 0.1.
Fig. 12 shows the results. As we can see, for highly visible
raindrops, the detection precision and recall rate is not obvi-
ously affected by raindrop size. The recall rate is mainly
affected by raindrop visibility. When the raindrops are too
small and hardly visible, the detection recall rate drops, and
when the raindrops are blurred, their visibility decreases
and the recall rate goes down accordingly.

When evaluated by the number of pixels, the precision
rate is higher on detecting larger raindrops. When evalu-
ated by the number of raindrops, however, the precision
rate is about the same for raindrops with any size. As
the raindrop visibility decreases, the precision does not
drop drastically, which indicates a low false alarm rate of
our method.

Raindrop motion and detection latency. As discussed in Sec-
tion 5, our features are more accurate if they are accumu-
lated overtime. In our experiment, we accumulate the
features over 100 frames, which takes around 4 seconds for
a video with 24 fps. Hence, we assume the raindrops need
to be static within 4 seconds (the quasi-static assumption).

Precision: pixel based
Raindrop Size 20 30 40 50 60

Recall: pixel based
Raindrop size 20 30 40 50 60
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Fig. 13. Appearance of synthetic moving raindrops. The raindrops are
around 40 pixels of size and are blurred with a 5 pixel disk kernel.
The speed of raindrops varies from 0 to 4 pixels/frame (100 pixels
per second).

We investigate the tolerance of our method on detecting
moving raindrops. As illustrated in Fig. 13, we generate
synthetic raindrops with controlled motion speed. The rain-
drop size is 40 pixels and the raindrops are blurred with a 5
pixel disk kernel. The speed of raindrops varies from 0 to 4
pixels/frame (0 to 100 pixels per second).

Accumulating features will increase the distinction
between raindrop and non-raindrop areas. However, when
raindrops are moving, this is inapplicable anymore. Hence,
we need to know how many frames needed to reliably
detect raindrops robustly. An example is illustrated in
Fig. 14. Here, the thresholds for the normalized intensity-
change and optic-flow features are set to 0.4 and 0.3, respec-
tively. The raindrop parameter is set to 60 pixels to 120 pix-
els. The smoothness is set to 2.57. The precision and recall
of all data is listed in Fig. 15.

As shown, when raindrops are quasi-static, the detection
accuracy is stable. The detection accuracy drops signifi-
cantly when using less than 20 frames. When using 100
frames and the raindrop moving speed is less than 0.4 pixel
per frame (10 pixel per second), the detection accuracy is
considerably stable. However, when the speed is increased
to more than 0.4 pixel per frame, accumulating less than 100
frames increases the accuracy. In this experiments, the opti-
mal number of accumulated frames is 20. The limit raindrop
speed of our method is 4 pixels per frame (100 pixel per sec-
ond). When raindrops move faster and 4 pixels per frames,
our method fails to detect them.
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Fig. 12. The precision and recall on detecting raindrops with various size and blur (Fig. 11). The detection threshold is fixed for all of the data. The
threshold of the normalized feature is set to 0.4 for the intensity change, and 0.3 for the optic flow. And the smoothness threshold is set to 2.5x.
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Fig. 14. The influence of number of frames on feature accumulation. Row 1, the accumulated feature. Row 2, the detection result. Row 3, the detec-
tion result where the white areas indicate raindrops. The raindrops are 40 pixels of size (long axis) and blurred with a 5 pixel disk kernel, raindrops

are moving with a speed 1.2 pixel per frame (30 pixel per second).
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Fig. 15. The precision and recall on detecting raindrops with various raindrop speed and detection latency (Fig. 13). The detection threshold is fixed
for all the data. The normalized feature threshold is set to 0.4 for the intensity change, and 0.3 for the optic flow. The raindrop roundness threshold is

setto 2.5,

Textureless Scenes. Our method assumes the environment
is sufficiently textured. Hence, in this experiment, we inves-
tigate how significant the absence of textures influences the
detection accuracy. In this experiment, the threshold for
normalized features is set to 0.4 for the intensity change
while 0.1 for the optic flow. The smoothness is set to 2.5,
and features are accumulated over 100 frames. As illus-
trated in Fig. 16, we perform Gaussian blur on the scene,
with ¢ varying from 0 to 10, and generate synthetic rain-
drops with a fixed size (40 pixels) and position.

As illustrated in Fig. 17, when the scene is textureless, the
intensity change is affected. The non-raindrop areas change
less on a less textured scene. The optic flow, however, is not
affected, because optic flow is based on the motion of tex-
ture. In addition to that, most of the state of the art optic
flow algorithms adopt the coarse-to-fine strategy in estimat-
ing the flow. The coarse estimation provides a robust global
estimation while the fine estimation provides the accurate
and detailed estimation. Thus the texture-less input only
affects IC feature. The precision recall is listed in Fig. 18,
which shows that when o > 5, the accuracy of the intensity
change based method drops because the feature on a
textureless scene is less distinctive, and the false alarm
rate increases.

7.2 Quantitative Comparison on Detection
Real Scenes with Groundtruth. We create a real data by drop-
ping water on a transparent panel as the ground truth and

wl ey

o=0 1 2 3 4 5 6 7 8 9

Fig. 16. Gaussian blur on a scene, with o varying from 0 to 10. The patch
size is 120x 120 pixels.

taking videos in the real world. We have a few scenarios for
the experiments. Experiment 1 includes the disturbance of the
light sources. Experiment 2 emphasizes on the varying shape
and size of raindrops. Experiment 3 focuses on significantly
blurred raindrops, and experiment 4 includes glare. The input
and results are shown in the first four columns in Fig. 19.

We compare our method with Eigen et al.’s [17], Roser
et al’s [14] and Kurihata et al.’s [16] method. Yamashita
et al’s [18], [19] methods require stereo cameras or a pan-
tile camera and are, thus, not included in the comparison.
The results are shown in the last two columns of Fig. 19.

We use the precision-recall curve to quantitatively ana-
lyze the performances. The results for each experiment are
shown in Fig. 20. According to the results, both of our
proposed methods outperform the existing methods. By

Fig. 17. The accumulated feature using intensity change and optic flow
on textured and textureless scenes. 100 frames are used for
accumulation.

Precision Recall
1 1 ]
0.8 S S 0.8 - —~—
0.6 1 0.6
——IC:pixel ——IC:pixel
0.4 - —e—IC:raindrops 0.4 —e—IC:raindrops
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Fig. 18. The precision and recall of raindrop detection on textured and
textureless scenes. The threshold for normalized features is set to 0.4
for the intensity change and 0.1 for the optic flow. The raindrop parame-
ter is set to 60 pixels to 160 pixels. The roundness threshold is set to
2.57. Features are accumulated over 100 frames.
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Fig. 19. The detection results using our methods and the existing methods.

combining IC (intensity change) with OF (optical flow), we
obtain the best performance to detect all of the raindrops
(because of IC) while keeping a low false alarm rate
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Fig. 20. The precision(R)-recall(R) curves of our methods and the two
existing methods. The thresholds of our normalized features are labeled.
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Car-mounted

. Experiment 4 Surveillance

N/A N/A

(because of OF). The detection using the intensity change
performs best. Unlike the existing methods that only detect
the center and size of raindrops, our proposed method can
detect raindrops with a large variety of shapes. Our method
also achieves high robustness in detecting highly blurred
and glared raindrops.

Real scenes without groundtruth. Fig. 19 shows the results
of our detection method in the following 3 situations: 1) A
daily use hand held camera, as in experiments 1-4. 2) A vehi-
cle-mounted camera, which is widely used for navigation and
data collection. 3) A surveillance camera which is mounted
into a fixed location. Our method outperforms the existing
methods in the all three situations as shown in the figure.

400 -Error 400 - Error 400
Wexler et al. r/\/’\\ml‘

200 4 Wexler etal. 200 200 -
-__——-MM
Ours

——n Ours
0 ————2uIS 0 — 0 —

1 51 Frame 1 51 Frame 1 51 Frame

Experiment 1 Experiment 2 Experiment 3
Fig. 21. Average (R; G; B;dx; dy; dt) error of recovering 100 continuous

frames of the experiment shown in Fig. 22.
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Fig. 22. The raindrop removal results using our methods and the method of Wexler et al. [21].
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Error: our method Wexler et al. (2004) Error: Wexler et al.

Car mounted camera

Fig. 23. The raindrop removal using our method. First row: the input sequence. Second row: the removal result with the raindrops manually labeled.

Third row: the removal result with the raindrops automatically detected.

7.3 Raindrop Removal

As illustrated in the first two columns of Fig. 22, the synthe-
sized raindrops are generated on a video, and used as an
input. Our method is compared with the method proposed
by Wexler et al. [21]. In [14], there is insufficient description
for the removal algorithm and thus it is not compared here.
The results are shown in the last four columns of Fig. 21.

As shown in Fig. 21, for the quantitative evaluation, we
run each of them on 100 continuous frames and calculate
the average error per pixel for each frame. The same as
Wexler et al. [21], the error is calculated on both the 8 bit
(R; G; B) value and spatial-temporal gradients (dz;dy;dt).
The proposed method benefits from the restoration in all
the 3 situations. Using the same computer, our method
needs 5 seconds per frame to remove raindrops, and Wexler
et al.’s needs 2 minutes.

We show a few results of removing raindrops in videos
taken by a handle held camera and a vehicle-mounted cam-
era, as shown in the first and second rows of Fig. 23 where we
can see some improvement. To demonstrate the performance
of our raindrop removal method, the manually labeled rain-
drops are also included. The overall automatic raindrop
detection and removal results in videos taken by a hand held
camera and a car mounted camera are shown in the third row
of Fig. 23, where we can see significant improvement. '

1. http://www.cvl.iis.u-tokyo.ac.jp/~yousd/CVPR2013/
Shaodi_CVPR2013.html

7.4 Applications

To show the benefits of our method, we apply it to two com-
mon applications in computer vision: motion field estima-
tion and structure from motion.

Motion estimation. Adherent raindrops occlude the back-
ground and their motion is significantly different from the
background motion. By removing the raindrops, we show
that the motion in the background can be correctly esti-
mated. We demonstrate the improvement on various scenes
shown in Fig. 24. SIFT-flow [30] is used for the motion esti-
mation; although, any optic flow algorithm can also be used.

In the first scene of Fig. 24 (columns 1 and 2), we applied
our method to a synthetically generated raindrop. As can be
seen, the motion field of the raindrop images (row 2) is sig-
nificantly degraded compared to that of the clear images
(row 1). Having removed the raindrop, the motion field
becomes more similar to that of the clear images (row 3). In
the second scene (columns 3 and 4) of Fig. 24, the images
have global motion because of the shaking camera.
Although the estimation on the repaired images reflects the
global motion, the estimation on raindrop images is also sig-
nificantly affected. In the last scene (columns 5 and 6), the
car-mounted camera is moving forward and the motion on
the repaired images correctly reflects the camera motion.

Since we have the clear image of the scene (Fig. 24 column
1), we can quantitatively evaluate the improvement of our res-
toration by measuring the end point error of optical flow esti-
mation on raindrop area computed from the raindrop video


http://www.cvl.iis.u-tokyo.ac.jp/~yousd/CVPR2013/ Shaodi_CVPR2013.html
http://www.cvl.iis.u-tokyo.ac.jp/~yousd/CVPR2013/ Shaodi_CVPR2013.html
http://www.cvl.iis.u-tokyo.ac.jp/~yousd/CVPR2013/ Shaodi_CVPR2013.html
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Fig. 24. Motion estimation using a clear video, raindrop video and repaired video.

and restored video. We perform the evaluation using 100 con-
secutive frames and the result is illustrated in Fig. 25, where
the average endpoint error of the restored video is reduced.
Structure from motion (SfM). Adherent raindrops move
along with the camera adversely affect the camera parame-
ter estimation. As a result, they also negatively affect the
accuracy of the dense depth estimation. Hence, we expect
that with raindrops being removed, the robustness of the
camera parameter and depth estimation associated with the
structure from motion technique can be improved. As illus-
trated in Fig. 26, we perform the structure from motion
method by Snavely et al. [32]. We use a clear video, a video
with adherent raindrop and a repaired video as inputs.
Samples of those videos are shown in the second row of
Fig. 22 . As can be seen, the repaired video provides better
results than that of the raindrop video on both the camera
parameter estimation and dense depth estimation.

Raindrop

—— Restored

S R RV -N
=
==———

L —

Fig. 25. Average end-point error of optical flow on raindrop video and
restored video.
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Fig. 26. Structure from motion using a clear video, raindrop video and
repaired video. The input view are shown in the second row of Fig. 22.

8 CONCLUSION

We have introduced a novel method to detect and remove
adherent raindrops in video. The key idea of detecting rain-
drops is based on our theoretical findings that the motion of
raindrop pixels is slower than that of non-raindrop pixels,
and the temporal change of intensity of raindrop pixels is
smaller than that of non-raindrop pixels. The important
idea of our raindrop removal is to solve the blending func-
tion with the clues from detection and intensity change in a
few consecutive frames, as well as to employ a video com-
pletion technique only for those that cannot be restored. To
our knowledge, our automatic raindrop detection and
removal method is novel and can benefit many applications
that possibly suffer from adherent raindrops.
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