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Abstract—In this paper, we present a method for stereo super-
resolution which employs a deep network. The network is trained
using the residual image so as to obtain a high resolution
image from two, low resolution views. Our network is comprised
by two deep sub-nets which share, at their output, a single
convolutional layer. This last layer in the network delivers an
estimate of the residual image which is then used, in combination
with the left input frame of the stereo pair, to compute the
super-resolved image at output. Each of these sub-networks is
comprised by ten weight layers and, hence, allows our network to
combine structural information in the image across image regions
efficiently. Moreover, by learning the residual image, the network
copes better with vanishing gradients and its devoid of gradient
clipping operations. We illustrate the utility of our network for
image-pair super-resolution and compare our network to its
non-gradient trained analogue and alternatives elsewhere in the
literature.

Index Terms—stereo super-resolution, convolutional neural
network, residual training

I. INTRODUCTION

Image super-resolution is a classical problem which has
found application in areas such as video processing [1], light
field imaging [2] and image reconstruction [3].

Given its importance, super-resolution has attracted am-
ple attention in the image processing and computer vision
community. Super-resolution approaches use a wide range
of techniques to recover a high-resolution image from low-
resolution imagery. Early approaches to super-resolution are
often based upon the rationale that higher-resolution images
have a frequency domain representation whose higher-order
components are greater than their lower-resolution analogues.
Thus, methods such as that in [4] exploit the shift and aliasing
properties of the Fourier transform to recover a super-resolved
image. Kim et al. [5] extended the method in [4] to settings
where noise and spatial blurring are present in the input image.
In a related development, in [6], super-resolution in the fre-
quency domain is effected using Tikohonov regularisation. In
[7], the motion and the higher-resolution image are estimated
simultaneously using the EM algorithm.

Other methods, however, adopt an interpolation approach
to the problem, whereby the lower resolution input image is
related to the higher-resolved one by a sparse linear system.
These methods profit from the fact that a number of statistical
techniques can be naturally adapted to solve the problem
in hand. These include maximum likelihood estimation [8]
and wavelets [9]. These methods are somewhat related to the
projection onto convex sets (POCS) approach [10]. This is a

set-based image restoration method where the convex sets are
used to constrain the super-resolution process.

The methods above are also related to example-based
approaches, where super-resolution is effected by aggregat-
ing multiple frames with complementary spatial information.
Baker and Kanade [11] formulate the problem in a regular-
isation setting where the examples are constructed using a
pyramid approach. Protter et al. [12] used block matching to
estimate a motion model and use exemplars to recover super-
resolved videos. Yang et al. [13] used sparse coding to perform
super-resolution by learning a dictionary that can then be used
to produce the output image, by linearly combining learned
exemplars.

Moreover, the idea of super-solution “by example” can be
viewed as hinging on the idea of learning functions so as to
map a lower-resolution image to a higher-resolved one using
exemplar pairs. This is right at the centre of the philosophy
driving deep convolutional networks, where the net is often
considered to learn a non-linear mapping between the input
and the output. In fact, Dong et al. present in [14] a deep
convolutional network for single-image super-resolution which
is equivalent to the sparse coding approach in [13], [15].
In a similar development, Kim et al. [16] present a deep
convolutional network inspired by VGG-net [17]. The network
in [16] is comprised by 20 layers so as to exploit the image
context across image regions. In [18], a multi-frame deep
network for video super-resolution is presented. The network
employs motion compensated frames as input and single-
image pre-training.

Here, we present a deep network for stereo super-resolution
which takes two low-resolution, paraxially shifted frames and
delivers, at output, a super-resolved image. The network is
somewhat reminiscent to those above, but there are two notable
differences. Firstly, as shown in Figure 1, we use two networks
in tandem, one for each of the input stereo frames, and then
combine them at the last layer. This contrasts with other
networks in the literature where the low resolution frames are
concatenated or aggregated at input. Secondly, instead of the
typical loss function used in deep nets, we employ a residual
learning scheme [19]. This residual scheme is not only known
to deal with the vanishing gradients well but has also been
suggested it improves convergence.



  

CNN_1CNN_1

CNN_outCNN_out

CNN_2CNN_2 Conv1_10

LR1

LR2
Upscale

Residual of LR1

Recover image

+

Fig. 1. Simple diagram showing the structure of our network. At input, the low resolution image pair is upscaled and used as input to the two sub-nets (one
for each view). The output of these sub-networks is then concatenated to be used as the input to another network which, in turn, combines these to obtain
the residual image. The residual image is then added to the up-sampled left input frame to obtain the super-resolved image.

II. DEEP NETWORK FOR STEREO SUPER-RESOLUTION

A. Architecture

As mentioned above, and shown in Figure 1, we have used
two sub-networks for each of the stereo pairs and then a
single output convolutional layer which delivers the image
residual. This residual is then used, in conjunction with the
left input frame, to obtain the super-resolved image. This can
be appreciated in more detail in Figure 2, where the two input
low resolution images, denoted LR1 and LR2 are then resized
to their target output size. These two re-sized images are then
fed into each of the two sub-networks.

Each of these two sub-networks are 10 layers deep. Each
layer is comprised by a convolution operation with 32 filters
of size 3 × 3 followed by batch normalization and a linear
rectifier unit (ReLU). In our network we have not included
gradient clipping. Note that these sub-networks are somewhat
reminiscent to that in [16]. Indeed, nonetheless the filters are
3×3, the layer can still exploit the image context across image
regions which are much larger than the filters themselves. In
this manner, the network can employ contextual information
to obtain a super-resolved image.

The two sub-networks then deliver an output of size W ×
H × 32, where W and H are the width and height of the
upscaled images. These two outputs are then concatenated to
obtain a W ×H×64 tensor which is then used as input to the
last convolutional layer of our network. This layer employs a
single 5× 5 filter to obtain the image residual. This layer still
employs batch normalisation but, unlike the other layers in the
network, lacks a rectification unit.

B. Residual Learning

As mentioned earlier, here we use a residual learning
approach to train our network. This concept was introduced
in [19] as a powerful tool for dealing with the vanishing
gradients problem [20]. It was later applied to single image
super-resolution in [16]. In [16], the authors also note that the
application of the residual appears to have a positive impact
in the training of the network, which, as they report, enhances
the convergence rate of the learning process.

Our target residual image R, is defined using the difference
between the low resolution upsampled image Î and the high
resolution frame I from the training set, i.e. R = I − Î . The
residual is used to compute an L2 loss function of the form

L =
1

2
| R(u)− R̂(u) |22 (1)

where, as usual, | · |22 is the squared L2 norm and R(u) and
R̂(u) are the target residual and that delivered by our network
for the pixel u in the imagery.

In this way, the value of the pixel u for the high resolution
image I∗ can be computed in a straightforward manner using
the expression

I∗(u) = Î(u) + R̂(u) (2)

III. EXPERIMENTS

In this section, we present a qualitative and quantitative
evaluation of our method and compare against alternatives
elsewhere in the literature. The section is organised as follows.
We commence by introducing the datasets we have used for
training and testing. Later on in the section we elaborate upon
the implementation of our method. We conclude the section by
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Fig. 2. Detailed diagram of our network architecture. Each of the blocks labelled Conv1i, where i denotes the index of the network layer consist of a
convolution, batch normalization and ReLU. Each of the weight layers for the two sub-networks are comprised by 32 filters of size 3 × 3. The last layer,
denoted Conv out is composed of a single 5× 5 filter.

presenting the results yielded by our network and comparing
these against alternative approaches.

A. Datasets

1) Training: For purposes of training, we have used the
Harmonic Myanmar 60p footage. The dataset is publicly
available 1. This contrasts with other methods elsewhere in
the literature. For instance, the authors in [14] employ a large
set of images from ImageNet while the method in [16] uses
382 images and data augmentation through rotation or flip to
obtain the training set.

The choice of our training set is mainly motivated by the
size of our network. Note that our network, with its ten
layers per stereo image and the final common output layer
has a large number of parameters to train. Thus, we have
chosen to employ a video dataset where stereo pairs are
comprised of consecutive frames. Further, the dataset was also
used for training and testing the VSRNET [18]. The main
difference to note, however, is that VSRNET [18] is a video,
i.e. multi-frame, network rather than a stereo vision one and,
therefore, typically employs 5 frames to recover the super-
resolved image.

Here, we have used 30 scenes comprising 15000 frames
from the training video and taken 27 scenes for training and
the remaining ones for validation. Note that each frame is
4K resolution, i.e. 3840 × 2160 px. This also contrasts with
other methods elsewhere where the common practice is to use

1The dataset can be downloaded at https://www.harmonicinc.com/
free-4k-demo-footage/

training sets with typical resolutions of 720 × 1024px. For
example, VideoSet4 [22] employs imagery of 720 × 576 px
whereas VideoSet14 [23] uses images with resolution of 800×
800 px.

The above details regarding resolution are important since
they motivate down scaling the 4K video used for training by
a factor of 4 to 960 × 540 px. Following [14], we convert
the video frames to the YCbCr colorspace [24] and employ
the luminance, i.e. the Y channel, for training. Moreover,
we note that, in the video frames used for training, there
are large image regions where the structure conveyed by the
imagery is very scarce and, hence, they’re contribution to the
residual is negligible. This is straightforward to note in sky
or flat surfaces where the low and high resolution imagery
are expected to have minimal variations with respect to one
another. Therefore, we have cropped the images into non-
overlapping small patches of size 96 × 54 and chosen those
with clear structural artifacts, such as edges and corners. This
yields a set of 330000 96× 54 px patches for training.

2) Testing: Here, we have followed [22] and used the four
test scenes, i.e. City, Walk, Calendar and Foliage, employed by
VideoSet4 for purposes of performance evaluation and testing.
Each of these videos have a resolution of 720× 576 px.

At input, each pair of input video frames are converted to
the YCbCr colorspace [24]. Once the luminance is in hand, we
use our trained network for super-resolving the Y channel. The
luminance is then used in combination with the chrominance,
i.e. the CbCr channels, to obtain the final trichromatic image in
the sRGB space [24]. In all our tests, we have referenced our

https://www.harmonicinc.com/free-4k-demo-footage/
https://www.harmonicinc.com/free-4k-demo-footage/


  

Fig. 3. Super-resolution results for a sample frame of both, the walk and foliage sequences used for testing with and upscale factor of 3. From top-to-
bottom: left low-resolution input frame, bicubic upsampling [21], the results yielded by SRCNN [14], VSRNET [18], a network akin to ours trained with a
mean-squared error loss and our residual-trained network.



  

Fig. 4. Super-resolution results for an up-scaling factor of 4 on two sample frames from the Walk and Foliage video sequences (left-hand column) and a
corresponding image region detail (right-hand column). From top-to-bottom: input image frame, bicubic up-sampling [21] and the results yielded by SRCNN
[14], VSRNET [18], a network akin to ours trained with a mean-squared error loss and our residual-trained network.



results with respect to the left input frame. Note that, for the
video sequences used here, if we view this image as the nth

frame, the right one would then be that indexed n+ 1. This,
in turn, implies that, for a testing sequence of N frames, we
obtain N − 1 high-resolution frames after testing the imagery
under study.

B. Implementation

For purposes of coding our network, we have used Mat-
ConvNet [25] as the basis of our implementation and chosen
standard stochastic gradient descent with momentum as the
optimisation method for training, where the momentum and
weight decay parameters are both set to 1. For the up-sampling
step, we have used a nearest neighbour approach and used a
decreasing learning rate schedule.

This schedule is as follows. At the start of the training
process, we have set λ to 10−6. The learning rate is then
reduced to λ = 10−7 after completing half of the training
process. To this effect, we have used 3000 batches of 100
image pairs and trained over 1000 epochs.

All our experiments have been carried out on a workstation
with an Intel i7, 3.7 GHz processor with 32GB of RAM and an
Nvidia 1080Ti GPU with 11 GB of on-board memory. On our
system, training took approximately 14 hrs., which is a major
improvement with respect to SRCNN [14], which takes several
days to train and is better than VSRNet [18] (22 hrs.), being
comparable to the network analogue to ours trained using the
least-squared error (12 hrs.).

C. Results

We now turn our attention to the results yielded by our
network and alternatives elsewhere in the literature. It is worth
noting, however, that, for comparison, and to our knowledge,
there is no stereo super-resolution network analogue to ours.
Therefore, we present comparison with a network with the
same configuration as ours trained using the mean-squared
error instead of the residual and two state of the art alternative
deep networks which have been proposed for either, single-
image super-resolution (SRCNN [14]) or video (VSRNET
[18]) super-resolution network. This is important since the first
of these, i.e. SRCNN [14], employs a single image at input
and, therefore, does not have to deal with the paralax and
registration errors introduced by the stereo baseline. VSRNET
[18], in the other hand, employs 5 frames at input and,
therefore, has much more information and image structure
available to compute the super-resolved image. For each of
the two alternatives, we have followed the authors and used
their code and training schemes as reported in [14] and [18].

We commence by presenting qualitative results on the
testing videos using our network and the alternatives. To this
end, in Figures 3 and 4 we show the super-resolved images
recovered by the methods under consideration and the input
imagery. In Figure 3, we show, from top-to-bottom, the input
low resolution image image used as one of the frames used as
input to our method and the alternatives and the results yielded
by bicubic upsampling [21], SRCNN [14], VSRNET [18], a

TABLE I
MEAN PSNR FOR THE VIDSET4 VIDEOS AT AN UP-SCALE FACTOR OF 4
FOR BOTH, OUR NETWORK AND AN AKIN DEEP NET TRAINED USING THE

MEAN-SQUARED ERROR.

Training City Calendar Walk Foliage Overall
Ours 24.1515 19.9039 25.9247 22.7161 23.212

Mean-squared 23.8922 19.816 25.5949 22.6796 23.038
error

similar network trained using the least-squared error and our
approach.

In Figure 4, we show, in the left-hand and third columns,
results on two sample frames of the Walk and Foliage se-
quences whose degraded analogue is used as a low-resolution
input. The second and right-hand columns show details of the
imagery. In the figure, from top-to-bottom we show the image
frame in its native high-resolution before being degraded to be
used for testing and the results yielded by bicubic upsampling
[21], SRCNN [14], VSRNET [18], a similar network trained
using the least-squared error and our approach.

From the results, note that our method, despite only using
two frames at input, yields results that are comparable with
those yielded by VSRNET [18]. This can be appreciated in
the dates on the calendar in Figure 1 and the car on the detail
in Figure 2. Moreover, the output of our method when applied
to the hat of the pedestrian in Figure 2 is in better accordance
with the high-resolution image frame than that delivered by
the alternatives. As compared with the network trained using
the mean-squared error, we can appreciate from the details
in Figure 4 that our residual trained network introduces less
“rigging” on the output imagery. This can be noticed in the
background on the pedestrian detail and the trees next to the
car.

In Table I, we compare our network, with its residual
training scheme with a similar one trained using the least-
squared error. In the table, we show the average peak signal

TABLE II
MEAN PSNR FOR OUR METHOD AND THE ALTERNATIVES WHEN APPLIED

TO THE VIDSET4 VIDEOS

Dataset Up-scale Bicubic SRCNN VSRNET Ours
factor up-sampling

City 2 27.9265 - - 29.3219
City 3 24.4695 25.6432 25.7138 24.6208
City 4 23.7672 24.2101 24.3406 24.1515

Calendar 2 22.8656 - - 23.9863
Calendar 3 19.8479 21.4807 21.5185 20.0590
Calendar 4 19.2183 20.0731 20.0141 19.9039

Walk 2 30.4016 - - 33.0468
Walk 3 25.0886 28.8565 28.9370 25.4551
Walk 4 24.6654 26.1918 26.2328 25.9247

Foliage 2 26.959 - - 28.7115
Foliage 3 22.9907 24.9970 25.1470 23.2202
Foliage 4 22.2351 23.0067 23.0995 22.7161
Overall 2 27.122 - - 28.901
Overall 3 23.108 25.351 25.439 23.356
Overall 4 22.485 23.422 23.471 23.212



to noise ratio (PSNR) over the four testing sequences for an
upscale factor of 4. From the figure, we can readily appreciate
the improvement in performance induced by the use of the
residual to train the network.

Finally, in Table II, we show a quantitative evaluation of
our method against the alternatives. To do this, we have used,
again, the PSNR over each of the testing image sequences. In
the table, we show the PSNR when an upscale factor of 2, 3
and 4 are used. As mentioned above, the three methods differ
in terms of the number of images taken at input and, hence, the
comparison presented here should be taken with caution. Note
that, despite taking two input images instead of five at input,
our method is comparable with VSRNET [18] with an upscale
factor of 4. Our method its also competitive with respect to
SRCNN [14], which is a single image method and, hence,
does not have to account for the image displacement in the
stereo pairs.

IV. CONCLUSION

In this paper, we have presented a deep convolutional
network for stereo super-resolution. The network is comprised
by two sub-nets that share a single output layer. Each of these
nets is ten layers deep, which allows them to exploit contextual
information across the image even when the filter size is
3× 3. We have trained the network using the residual image.
Our network is devoid of gradient clipping operations and
converges faster at training than other alternatives elsewhere
in the literature. We have also illustrated the utility of our
network for stereo super-resolution and compared out results
to those yielded by alternatives elsewhere in the literature.
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