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Abstract. In rainy scenes, visibility can be degraded by raindrops which
have adhered to the windscreen or camera lens. In order to resolve
this degradation, we propose a method that automatically detects and
removes adherent raindrops. The idea is to use long range trajectories to
discover the motion and appearance features of raindrops locally along
the trajectories. These motion and appearance features are obtained
through our analysis of the trajectory behavior when encountering rain-
drops. These features are then transformed into a labeling problem,
which the cost function can be optimized efficiently. Having detected
raindrops, the removal is achieved by utilizing patches indicated, enabling
the motion consistency to be preserved. Our trajectory based video com-
pletion method not only removes the raindrops but also complete the
motion field, which benefits motion estimation algorithms to possibly
work in rainy scenes. Experimental results on real videos show the effec-
tiveness of the proposed method.

1 Introduction

The performance of outdoor vision systems can be degraded due to bad weather
conditions such as rain, haze, fog and snow. On rainy days, it is inevitable that
raindrops will adhere to camera lenses, protecting shields or windscreens, causing
failure to many computer vision algorithms that assume clear visibility. One
of these algorithms is motion estimation using long range optical flow. In this
case the correct correspondence of pixels affected by adherent raindrops will be
erroneous, as shown in Fig. 1.b.

In this paper, our goal is to detect and remove adherent raindrops (or just
raindrops for simplicity) by employing long range trajectories. To accomplish
this goal, our idea is to first generate initial dense trajectories in the presence
of raindrops. Surely, these initial trajectories are significantly affected by rain-
drops, causing them to be terminated and drifted. We analyze the motion and
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(b) Dense trajectories(a) Video with raindrop (c) Trajectory matching (d) Raindrop removal 

Fig. 1. An example of the results of our proposed detection and removal method.
(a) Scene with raindrop. (b) Dense long trajectories. (c) Matching of trajectories
occluded by raindrop. (d) Trajectory based video completion.

appearance behavior of the affected trajectories, and extract features from them.
We formulate these features in a Markov-random-field energy function that can
be optimized efficiently. Having detected raindrops, we use trajectory linking to
repair the terminated or drifted trajectories. Finally, we remove the raindrops
using the trajectory based video completion (Fig. 1.c and d). The overall pipeline
is described in Fig. 2.

Unlike some existing methods, in this work, first we introduce a novel detec-
tion method applicable for both thick and thin raindrops as well as raindrops
of any size, shape, glare, and level of blurring. We call a raindrop thick when
we cannot see the objects behind it, and thin, when it is sufficiently blurred,
but still allows us to partially see the objects behind it. Second, we perform a
systematic analysis of the behavior of thick and thin raindrops along motion
trajectories based on appearance consistency, sharpness, and raindrop mixture
level. This analysis is novel, particularly when applied to raindrop detection.
Third, we devise a method to detect and remove raindrops that allows us to
recover the motion field. In addition, to our knowledge, our method is the first
to address the problem of adherent raindrops in the framework of long range
motion trajectories.

Inter frame
optical flow

Raindrop
video

Dense
trajectories

Trajectory
matching

Raindrop 
removal

Clear
video

Raindrop
detection

Fig. 2. The pipeline of our method.

2 Related Work

Bad weather has been explored in the past decades including: haze, mist, fog
(e.g., [1–4]), falling rain and snow (e.g., [5–7]). For falling rain, Garg and Nayar
study the physical model first [8], and later detect and remove it by adjusting
camera parameters [6,9]. Barnum et al. [5] detect and remove both rain and snow.
Recently, single image based methods are proposed by Kang et al. [10] and Chen
et al. [7]. Unfortunately, applying these methods to handle adherent raindrops is
infeasible, because of the significant physics and appearance differences between
falling raindrops and adherent raindrops.
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A number of methods have been proposed to detect thick adherent raindrops
caused by sparse rain. Eigen et al. [11] and Kurihata et al. [12] proposed learning
based methods, which are designed to handle raindrops, but not specifically to
differentiate raindrops from opaque objects such as dirt. Both of the methods
work only with small and clear (non-blurred) raindrops. Yamashita et al. utilize
specific constraints from stereo and pan-tilt cameras [13,14], and thus is not
directly applicable for a single camera. Roser et al. propose a ray-tracing based
method for raindrops that are close to certain shapes [15,16], and thus can cover
only a small portion of possible raindrops. You et al. [17] propose a video based
detection method by using intensity change and optical flow. The method is
generally useful to detect raindrops with arbitrary shapes, however the detection
of thin raindrops are not addressed, and it requires about 100 frames to have
good results. In comparison, our method only needs 24 frames, assuming the
video frame rate is 24 fps.

As for raindrop removal, Roser and Geiger [15] utilize image registration,
while Yamashita et al. [13,14] align images using the position and motion con-
straints from specific cameras. You et al. use temporal low-pass filtering and
patch based video completion [18]. Generally, there are some artifacts in the
repaired video because none of these methods consider motion consistency which
is sensitive to human visual perception. Eigen et al. [11] replace raindrop image
patches with clear patches through a neural-network learning technique, causing
the method to be restricted on the raindrop appearance in the training data set.
This method can only replace small and clear raindrops.

Sensor dust removal might be related to raindrop detections, [19–21], by
considering raindrops as dust. Unlike dust however, raindrops could be large,
not as blurred as dust, and affected by the water refraction as well environment
reflection, making the sensor dust removal methods unsuitable for detecting
raindrops.

For video based motion estimation, dense and temporally smooth motion
estimation is desired. Sand et al. [22] propose particle video which generates
motion denser than sparse tracking and longer than optical flow. Later, this idea
is improved by Sundaram et al. [23] by utilizing GPU acceleration and large
displacement optical flow [24]. Volz et al. [25] archive a pixel-level density by a
new optical flow objective function, however their latency is limited to several
frames. Rubinstein et al. [26] extend the temporal latency of methods [22,23]
by linking the trajectories occluded by solid objects. This paper uses [23] for
initial trajectory estimation but with different termination criteria, and utilizes
trajectory linking as in [26] but with the features derived from our trajectory
analysis over raindrops. As a result, the motion field estimation of degraded
videos by raindrops can be much improved, compared to those that do not
consider such degradation.

3 Trajectory Analysis

To find features that differentiate raindrops from other occlusions, as well as to
identify thick and thin raindrops, we need to analyze the appearance of patches
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Fig. 3. (a) Raindrop model. (b) Appearance of a clear raindrop. (c) Appearance of
blurred raindrop observed on the image plane.

along individual trajectories and the consistency of forward/backward motion.
For this, we first need to know the image formation model of raindrops, and the
computation of long range trajectories.

Raindrop Model. Unlike opaque objects, raindrops can look different in dif-
ferent environments due to the focus of the camera on the environment. Figure 3
illustrates a raindrop physical model. Given a pixel located at (x, y), the appear-
ance of the clear environment is denoted as Ic(x, y) and the raindrop appearance
as Ir(x, y). For raindrops, the following mixture function models the intensity [17]:

I(x, y) = (1 − α(x, y))Ic(x, y) + α(x, y)Ir(x, y), (1)

where α(x, y) denotes the mixture level, which is dependent on the size and
position of the raindrop as well as the camera aperture.

Dense Long Range Trajectories. Given a video sequence, we can form a 3D
spatio-temporal space as illustrated in Fig. 4.a, where the spatial position of each
pixel is indicated by (x, y) and the time of each frame i by ti. The notation T
in Fig. 4.b represents a trajectory consisting of a number of concatenated nodes
N(i), shown in Fig. 4.c, and can be expressed as:

T = {N(i)}, istart≤i≤iend

N(i) = (x(ti), y(ti)) = (xi, yi), tstart≤ti≤tend,
(2)

where i is the index of the video frame, and (xi, yi) is the position of the node.
The start and end of a trajectory are denoted by tstart and tend respectively. Note

Fig. 4. Spatio-temporal space and dense trajectories. (a) 3D Spatio-temporal space;
(b) A 2D slice visualizes the dense trajectories. (c) A trajectory consists of a number
of concatenated nodes.
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that the nodes are arranged in a temporal ascending order, where a trajectory
has only one node at each frame.

We employ GPU-LDOF [23] to generate the initial dense trajectories. How-
ever, we ignore its trajectory termination criteria; since, [23] considers only solid
occlusions, while in rainy scenes, there are thin raindrops, where the occluded
scenes can still be seen. Another reason is that [23] considers occlusion bound-
aries to be sharp, while in our case, raindrop boundaries are usually soft due
to the out-of-focus blur. We generate trajectories in a forward motion, from the
first to the last frame. In this case occlusions by raindrops or other objects might
cause some trajectories to stop, and consequently some areas in some frames
will not have trajectories. To cover these areas, we also generate trajectories in
a backward motion.

Figure 5 shows an example of the dense trajectories in a clear day scene and
in a scene with a thick and in a scene with a thin raindrop. In our findings,
with regard to occlusions, a trajectory can encounter the following events: (A)
it is occluded by a solid non-raindrop object and drifted; (B) it is occluded by a
thick raindrop and drifted; (C) it is occluded by a thin raindrop and drifted; and
(D) it is occluded by a thin raindrop but not drifted.

These events encountered by trajectories allow us to identify the presence of
raindrops. We consider that occlusions by thick raindrops or opaque objects will

(b) Scene with a thick raindrop

(c) Scene with a thin raindrop

A

B

D

A

B

D

C

(a) Clear scene

Video sequence Spatio-temporal slice Dense trajectories

Fig. 5. Video in rainy scenes and events on the trajectories. (a) A clear day scene. (b) A
scene with a thick raindrop. (c) A scene with a thin raindrop. The clear scene data is
from [22]. Four trajectory events are labeled as, A: Occluded by a solid non-raindrop
object and drifted. B: Occluded by a thick raindrop and drifted. C: Occluded by a thin
raindrop and drifted. D: Occluded by a thin raindrop but not drifted. The trajectory
appearance of each event is shown in Fig. 6.
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cause abrupt changes in both the appearance and the motion along trajectories,
while occlusions by thin raindrops will mainly cause changes in the appearance,
particularly the sharpness. The details of the analysis are as follows.

3.1 Motion Consistency Analysis

For a trajectory T generated by forward tracking, we consider a node N(i) on
frame ti. Its succeeding N(i+1) is found by referring to the forward optical flow
f+

i = (u+, v+)i from frame i to frame i + 1:

N(i + 1) = (xi, yi) + (u+(xi, yi), v+(xi, yi))i = N(i) + f+
i (N(i)). (3)

Similarly, given a trajectory T ′ generated from backward tracking, nodes are
related by the backward motion:

N ′(i) = N ′(i + 1) + f−
i+1(N

′(i + 1)), (4)

where f−
i+1 = (u−, v−)i+1 is the backward optical flow from frame ti+1 to

frame ti.
If nodes along a trajectory are not occluded and the optical flow is correctly

estimated, the following equation stands with negligible (sub-pixel) error:

m+(N(i)) = ‖f+
i (N(i)) + f−

i+1(N(i) + f+
i (N(i)))‖2 = 0

m−(N ′(i)) = ‖f−
i (N ′(i)) + f+

i−1(N
′(i) + f−

i (N ′(i)))‖2 = 0
(5)

where m+(N(i)) and m−(N(i)) are the forward motion consistency and the
backward motion consistency of node N(i), respectively.

Motion Inconsistency Caused by Occlusions. Given a trajectory from the
forward tracking (or the backward tracking), the motion consistency m+(N(i))
might not be zero if N(i+1) is occluded. In events A and B, N(i+1) is completely
occluded by an opaque object or a thick raindrop. In this case, N(i) does not
have a corresponding node in the next frame. However, the inter-frame optical
flow f+

i still gives correspondence for N(i). This is because the optical flow
regulation forces every pixel to have correspondence. Thus, corresponding node
N(i) + f+

i (N(i)) is wrong, resulting in a non-zero motion consistency.
In event C, N(i + 1) is occluded by a thin raindrop, which according to

Eq. (1), can generate a partial occlusion. As illustrated in Fig. 6, in this event,
the consistency is likely to be non-zero, since the pixel at N(i+1) is the mixture
of both the tracked node and the raindrop, where each of them has correspon-
dence in the previous frame; causing both the forward and backward optical
flow to likely generate wrong correspondence. Here, the mixture level α plays an
important role for the wrong correspondence. Overall, the thicker the raindrop,
the more likely the consistency is to be non-zero.

In event D, N(i + 1) is occluded by a considerably thin raindrop, where
N(i + 1) is sufficiently visible such that both the forward and backward optical
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Fig. 6. When a point is covered by a thin raindrop, it has two correspondences in other
frames: the raindrop and the covered object. The causes incorrect tracking for optical
flow that assumes only one correspondence.

flow correctly match N(i) with N(i+1). In this event, the mixture level is close
to zero, usually less than 0.2.

Motion Consistency Feature. Since events A, B and C might result in a
non-zero motion consistency value, we can use the consistency, m+(N(i)) and
m−(N(i)), as features to indicate the presence of occlusion, which in some cases,
can be raindrops.

We calculate the motion consistency feature for each frame at ti by collecting
m+ and m− of all the nodes in the frame, denoted as Mi. Assuming the video frame
rate is 24 fps1 and raindrops are static in a short time period (one second), we
sum up the features over 24 frames:

Mi =
∑

i−24<j≤i

Mj . (6)

Some pixels might not have consistency values due to the failure of optical flow
to track. In this case, we obtain the values from linear interpolation. Figure 8.a
shows an example of Mi.

As for event D, since possible occlusion can not be detected by the motion
consistency, we detect it based on the appearance analysis, discussed in the
subsequent section.

3.2 Appearance Analysis

Given a trajectory T , we crop a small image patch, denoted as P (i), centered at
each node N(i) with length r, where r is set to 21 pixels by default (based on
the resolution of our videos). Figure 7 shows an example of patches sequenced
along trajectories for events A, B, C, and D.
1 The 24fps framerate only for reference on how we can deal with raindrop dynamics

since our method assumes static raindrops during the detection process, while in fact
in the real world raindrops can move. Hence, assuming the widely adopted framerate,
it means we assume raindrops at least do not move in 1-s period of time. Obviously,
a higher framerate does not pose any problem (except for the computation time),
however a much lower framerate will create a large displacement problem, which can
affect the optical flow accuracy.
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No event

Event A: Non-raindrop occlusion and drift

Event B: Thick raindrop occlusion and drift

Event C: Thin raindrop occlusion and drift

Event D: Thin raindrop occlusion, no drift

Fig. 7. Appearance of trajectories in Fig. 5. The patch size (21 × 21 pixels by default)
is set to 41 × 41 pixels for better visualization.

Appearance Consistency. As can be seen in Fig. 7, all four events might
generate appearance changes, particularly for events A, B and C. We calculate
the appearance consistency for node N(i) using:

a(N(i)) = ‖SIFT (P (i + 1)) − SIFT (P (i))‖2, (7)

where SIFT ( ) is the SIFT descriptor [27], converts patch P to one feature array.
For color images, RGB channels are converted separately and, later combined.

The reason of choosing SIFT is to achieve robustness against some degrees
of affine deformation. Since even without occlusions, the appearance of an image
patch might change. Note that within a few frames (i.e., fewer than 24 frames),
these changes should be within the degrees where SIFT can still work, since they
represent less than 1 s in real time.

Similar to the motion consistency, we compute the appearance consistency
for frame ti, denoted as Ai, by collecting the appearance consistency of all of
the nodes in the frame. The integration of Ai over 24 frames is denoted as Ai.
Figure 8.b shows an example of Ai.

The appearance consistency is able to detect all of the occlusion events (A, B,
C, and D), however, it lacks the ability to distinguish a non-raindrop occlusion
from a solid raindrop occlusion.

Sharpness Analysis. We define the sharpness of patch P (i) as:

s(P (i)) =
∑

(x,y)∈P (i)

�����
∂

∂x
I(x, y),

∂

∂y
I(x, y)

�����
2

(8)

where I(x, y) is the intensity value of pixel (x, y). For color images, RGB channels
are calculated separately and added up afterward.
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Unlike blurred raindrops that have low sharpness in the area including the
boundary, non-raindrop objects will have large sharpness at their boundary, or
inside their area when they are textured. Therefore, by evaluating the sharpness,
we can differentiate non-raindrop objects (Event A) from raindrops (Events B,
C and D). The sharpness for frame ti, denoted as Si is the collection of the
sharpness of all nodes in the frame. The integration of Si over 24 frames is
denoted as Si, Fig. 8.c shows an example of Si.

Fig. 8. Raindrop features. (a) Accumulated motion consistency M. (b) Accumulated
appearance consistency A. (c) Accumulated sharpness S, colormap is inversed for visu-
alization. (d) Mixture level estimation B.

Raindrop Mixture Level. Analyzing the sharpness along trajectories does
not only enable us to distinguish raindrops from non-raindrop objects, but it
also allows us to estimate the raindrop mixture level, α. For a given patch P (i),
Eq. (1) can be rewritten as:

P (i) = (1 − α(i))Pc + α(i)Pr(i)
α(i) = α(N(i)) = α(x(ti), y(ti)),

(9)

where Pc is the clear patch component and Pr(i) is the raindrop component. α(i)
is the mixture level of the patch. In the equation, we have made two approxima-
tions: First, the mixture level α inside a patch is constant. Second, the change
of clear patch component Pc along the trajectory is negligible in a short time
period (i.e., within 24 frames for a video with 24 fps).

From Eqs. (8) and (9), we can write the following:

s(P (i)) = s[(1 − α(i))Pc + α(i)Pr(i)]
≤ s[(1 − α(i))Pc] + s[(α(i)Pr(i)]
= (1 − α(i))s(Pc) + α(i)s(Pr(i)).

(10)

s((1 − α(i))Pc) = s[P (i) − α(i)Pr(i)] ≤ s(Pc) + α(i)s(Pr(i)). (11)

Assuming the raindrop is sufficiently blurred, we have: s(Pr(i)) = 0. Substi-
tuting this in Eqs. (10) and (11) and comparing them, we have: s(P (i)) =
(1 − α(i))s(Pc). Thus, we can estimate the mixture level of patch P (i) by com-
paring the sharpness with a clear patch in the same trajectory as:

α(i) = 1 − s(P (i))/s(Pc). (12)
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For a given patch N(i), sharpness of a clear patch sh(Pc) is obtained by
evaluating the patch sharpness for m neighbor patches along the trajectory:

s(Pc) = max s(P (i ± j)), j ≤ m, (13)

where m = 10 as default. When the clear patch has less texture, s(Pc) is small
and will result in a large error in Eq. (13). Hence, we only use textured patches
to estimate the mixture level. Note that, if m is too small, the trajectory interval
is too short, making us unable to have clear patches. On the contrary, if m is too
large, the tracking drift will accumulate, causing the trajectories to be incorrect.
In our observation for our test videos, m = 10 could avoid the problem.

Similarly, we can collect the mixture level for frame ti, denoted as Bi. The
integration of Bi is denoted as Bi. Figure 8.d is an example of Bi.

4 Raindrop Detection

The detection of raindrops can be described as a binary labeling problem, where
for given a frame, the labels are raindrop and non-raindrop. Similarly, the mix-
ture level can be described as a multiple labeling problem. The labeling can be
done in the framework of Markov random fields (MRFs).

Raindrop Labeling. In the previous section, three features are shown for rain-
drop detection: motion consistency M, appearance consistency A and sharpness
S. Thus, to detect raindrops, we combine these three features, after normalizing
them, to form the following data term:

Edata(x) = ‖F(x) − (wm + wa)L(x)‖1

F(x) = (wmM(x) + waA(x))max(0, 1 − wsS(x))
(14)

where wm, wa and ws are the weight coefficients for the three features. And F(x)
is the combined feature. The weights were chosen empirically by considering the
precision-recall curve, where a larger weight enabled more sensitive detection.
We set wm = 16, wa = 16 and ws = 1 by default. L(x) ∈ {0, 1} is the binary
label, with 0 being non-raindrop. The normalization of the three features is done
by setting the mean value to 0.5 and the variance to 0.5.

Since the boundaries of raindrops are significantly blurred, we can use a
smoothness prior term for labeling neighboring pixels:

Eprior(x) =
∑

xj∈V (x)

|L(xj) − L(x)|, (15)

where V (x) is the neighbor of x. We use graphcuts [28–31] to solve the opti-
mization. Figure 9.a is an example of the labeling result.

Mixture Level Labeling. Having obtained the binary labeling of the raindrop
areas, we further label the raindrop mixture level α(x) through multi-level label-
ing. We use the estimated mixture level B (Eq. (12)) as a clue. The data term is
expressed as:

E′
data(x) = wb‖B(x) − α(x)‖1 + wL‖L̃(x) − α(x)‖1, (16)
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Fig. 9. Raindrop detection via labeling. (a) Binary labeling of the raindrop area.
(b) Multiple labeling of the mixture level.

where L̃(x) is the binary labeling result, wb and wL are the weight coefficients
which are set to wb = 8, wL = 2 by default. α(x) has 21 uniform levels from
0 to 1. The prior term is set in a similar way to that of the binary labeling.
Figure 9.b shows our estimated mixture level for all pixels.

5 Raindrop Removal

Having detected the raindrops, the next step is to remove them. The idea is that
given a detected area of a raindrop, we collect the patches along the correspond-
ing trajectories, and use these patches as a source of information to fill in the
detected raindrop area.

Based on the binary labeling result, we first remove nodes in the trajectories
that are labeled as raindrops, since these trajectories are likely to be incorrect
or drifted. By this operation, some of the trajectories will be shortened, and the
others will be broken into two trajectories.

To replace the removed nodes of trajectories, we match the corresponding exist-
ing trajectories based on [26], where the data term is based on SIFT, temporal
order, and inter-frame motion. Figure 1.c is an example of matched trajectories.
After matching, we interpolate the missing nodes. Given a matched trajectory pair
Ti and Tj , the last node of Ti, denoted as N i(end) = (x(tiend), y(tiend)), is matched
to the first node of Tj , denoted as N j(1) = (x(tjstart), y(tjstart)). Here, tiend < tjstart

means for all matched pairs. We linearly interpolate the missing nodes between
frames tiend and tjstart based on:

N(k) =
tjstart − tk

tjstart − tiend

N i(end) +
tk − tiend

tjstart − tiend

N j(1), tiend < tk < tjstart. (17)

5.1 Trajectory-Based Video Completion

Having obtained the trajectories for the raindrop areas, the raindrop completion
is done by propagating the clear background pixels along a trajectory towards the
raindrop area. Using the guidance of trajectories, we propose a removal strategy
which preserves both spatial and temporal consistency.

The completion is done frame by frame. First, we start from the first frame
and move forward until we find a frame t which contains interpolated nodes.
For the frame t, inside a raindrop area, we denote the interpolated nodes as
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{Ni(t)}, where i is the trajectory index. According to the trajectory, we find
the corresponding nodes in the previous frame: {Ni(t − 1)}. A transformation
can be determined between the two sets of nodes. Depending on the number
of nodes in the set, we use affine transformation for three and more matches,
translation and rotation for two matches, and translation for one match. Then,
the image patch from t−1 is transformed and placed at the raindrop area in t. By
utilizing information from groups of nodes, we preserve both spatial consistency
and temporal consistency. This process continues until it reaches the last frame.
For the repaired patch, we denote its confidence as: C(t) = C(t − 1) − 1. The
confidence degrades by 1 every time it is propagated. And the non-interpolated
patches have a confidence of 0.

Similarly, we do the backward process starting from the last frame. As a
result, for each repaired area, there are two solutions: one from the forward
process, and one from the backward process. We chose the one with the higher
confidence. As for static or quasi-static areas where no linked trajectory exists,
we use the video inpainting method by Wexler et al. [18] for repair. An example
of the repaired video is shown in Fig. 1.d.

Thin Raindrops. For thin raindrops (event D, generally α < 0.2), the trajec-
tories inside the raindrop areas are already correct, therefore we do not need to
propagate the appearance from other frames, since we can directly enhance the
appearance. As discussed in Sec. 3.2, thin raindrops can be relatively blurred,
hence to enhance them, for a node N with appearance P , we convert P to P
using 2D-DCT and set the constant component P(0, 0) = 0. Then, we enhance
the sharpness according to the mixture level: P ′ = 1

1−αP. We replace the con-
stant component which is the one with a non-raindrop node along the trajectory.
Finally, the enhanced patch P ′ is obtained using inverse-DCT.

6 Experiments

We conducted both quantitative and qualitative evaluation to measure the accu-
racy of our detection and removal method. Our video results are included in the
supplementary material.

6.1 Raindrop Detection

Dataset. In our experiments, the video data were taken from different sources
to avoid data bias and to demonstrate the general applicability of our method.
Data 1 was from Sundarum et al. [23], data 3 was from KITTI Benchmark [32],
data 5 and 7 were from You et al. [17] and the rest were downloaded from the
Internet. In these data, the camera setups vary from a car mounted camera, a
hand held camera to a surveillance camera.

Comparison with State-of-the-art. We used both synthetic and real rain-
drops, and compared our method with three state-of-the-art methods, Eigen
et al.’s [11], You et al.’s [17] and Roser et al.’s [15]. The results are shown in
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Input Ground truth You et al. (2013)Eigen et al. (2013)

Data 2: synthetic raindrops – thin raindrops – surveillance camera

Data 1: synthetic raindrops – thick raindrops – car mounted camera

Data 5: real raindrops – thick and thin raindrops – hand held camera

Data 6: real raindrops – thin raindrops – car mounted camera

Proposed

N/A

N/A

Roser et al. (2009)

Data 7: real raindrops – thick raindrops with glare – hand held camera

N/A

Data 8: real raindrops – thin raindrops with glare – car mounted camera

N/A

Data 3: synthetic raindrops – thick and thin raindrops – car mounted camera

Data 4: synthetic raindrops – thick and thin raindrops – hand held camera

Fig. 10. The raindrop detection results using our method and the existing methods.
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Fig. 11. Precision-recall curve on detection for the methods shown in Fig. 10. First
row: evaluation at a pixel level. Second row: evaluation at number of raindrops level.
Dashlines indicates the range where no data is available.
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Fig. 10. As can be seen, Eigen et al.’s method failed to detect large and blurred
raindrops, and mislabeled textured areas (such as trees) as raindrops. As for
You et al.’s method, although it correctly detected thick raindrops, thin rain-
drops were simply neglected. Roser et al.’s method detected round raindrops and
thin raindrops only when the background was textuerless.

Quantitative Evaluation. For the synthetic raindrops, data 1–4 in Fig. 10, we
quantitatively evaluated using the precision-recall curve. In addition of number
of raindrop level evalutation, we also performed pixel-level evaluation. The pre-
cision is defined as the number of the correctly labeled pixels divided by the
number of all pixels labeled as raindrops. The recall is defined as the number of
the correctly labeled pixels divided by the number of the actual raindrop pixels.
The result is shown in Fig. 11. As can be seen, our proposed method outper-
formed some existing methods for both accuracy and recall. Our method have
a low false alarm rate for both thick and thin raindrops. As for the real rain-
drops, data 5–8, our method successfully labeled thin raindrops as well as thick
raindrops and achieved better precision.

False Alarm rate Evaluation. To test the robustness of our method, we ran
our algorithm on the first four data shown in Fig. 10 with all the synthetic rain-
drop removed. Table 1 shows the number of raindrop spots detected, although
there is no raindrop in the input videos. Our method shows a significantly low
false alarm rate compared to the other methods.

Table 1. False alarms on Data 1–4 (Fig. 10) with all synthetic raindrops removed.
Evaluated by number of spots erroneuously detected as raindrops.

Speed. On a 1.4 GHz notebook with Matlab and no parallelization, the inter-
frame optical flow was about one minute per frame. The tracking and feature
collecting together was about 0.2 s per frame. Graphcut was about 5 s for one
detection phase. While our algorithm is not real time, we consider it to be still
useful for offline applications, such as road accident analysis, Google-like street
data collection, etc.

6.2 Raindrop Removal

Figure 12 shows the results of raindrop removal of a few methods, along with the
groundtruth. The results include those of Eigen et al.’s [11] and You et al.’s [17].
Roser et al.’s method does not provide the implementation details for raindrop
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Ground truth Input Eigen et al. (2013)
Data 0: thick raindrop

Data 2: thin raindrops

Proposed You et al. (2013)

Data 3: thick and thin raindrops

Data 1: thick raindrops

Fig. 12. The raindrop removal results.

removal, and thus it was not included. As can observed in the figure, our method
removed both thin and thick raindrops. Eigen et al.’s method failed to remove
large raindrops and it erroneously smoothed textured area. You et al.’s method
failed to remove thin raindrops, and the quality is affected by the detection
accuracy.

Repaired Motion Field. Figure 13 shows the results of the motion field estima-
tion, before and after the raindrop removal. As shown in the figure, our method
can improve the dense motion estimation, by removing the raindrops, and then
repairing the motion fields.

OF of ground truth OF of repaired video
Data 0: thick raindrop Data 1: thick raindrops

Data 2: thin raindrops

OF of input

Data 3: thick and thin raindrops

OF of ground truth OF of repaired videoOF of input

Fig. 13. Comparison on motion field estimation before and after raindrop removal.
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7 Conclusion and Future Work

We have introduced a method that automatically detects and removes both
thick and thin raindrops using a local operation based on the long trajectory
analysis. Our idea is using the motion and appearance features that are extracted
from analyzing the trajectories-raindrops encountering events. These features
are transformed into a labeling problem which is efficiently optimized in the
framework of MRFs. The raindrop removal is performed by utilizing patches
indicated by trajectories, enabling the motion consistency to be preserved. We
believe our algorithm can be extended to handle other similar occluders, such as
dirt or dust. For future work, we consider exploring dense-trajectory analysis of
dynamic raindrops and improving the computation time.
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Recovery (NET), MEXT, Japan.
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